Whole-body humanoid robot imitation with pose similarity evaluation

نویسندگان

  • Jie Lei
  • Mingli Song
  • Ze-Nian Li
  • Chun Chen
چکیده

Imitation is considered to be a kind of social learning that allows the transfer of information, actions, behaviors, etc. Whereas current robots are unable to perform as many tasks as human, it is a natural way for them to learn by imitations, just as human does. With the humanoid robots being more intelligent, the field of robot imitation has getting noticeable advance. In this paper, we focus on the pose imitation between a human and a humanoid robot and learning a similarity metric between human pose and robot pose. In contrast to recent approaches that capture human data using expensive motion captures or only imitate the upper body movements, our framework adopts a Kinect instead and can deal with complex, whole body motions by keeping both single pose balance and pose sequence balance. Meanwhile, different from previous work that employs subjective evaluation, we propose a pose similarity metric based on the shared structure of the motion spaces of human and robot. The qualitative and quantitative experimental results demonstrate a satisfactory imitation performance and indicate that the proposed pose similarity metric is discriminative. & 2014 Elsevier B.V. All rights reserved.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Tasks prioritization for whole-body realtime imitation of human motion by humanoid robots

This paper deals with on-line motion imitation of a human being by a humanoid robot using inverse kinematics (IK). First, the human observed trajectories are scaled in order to match the robot geometric and kinematic description. Second, a task prioritization process is defined using both equality and minimized constraints in the robot IK model, with four tasks: balance management, end-effector...

متن کامل

Dynamic Imitation in a Humanoid Robot through Nonparametric Probabilistic Inference

We tackle the problem of learning imitative wholebody motions in a humanoid robot using probabilistic inference in Bayesian networks. Our inference-based approach affords a straightforward method to exploit rich yet uncertain prior information obtained from human motion capture data. Dynamic imitation implies that the robot must interact with its environment and account for forces such as gravi...

متن کامل

Learning Full-Body Motions from Monocular Vision in Real-Time: Dynamic Imitation in a Humanoid Robot

Learning Full-Body Motions from Monocular Vision in Real-Time: Dynamic Imitation in a Humanoid Robot

متن کامل

Imitation-Based Task Programming on a Low-Cost Humanoid Robot

Humanoid robots are complex service platforms with anthropomorphic features, specifically designed for close interaction with humans. Conventional programming strategies are hardly applicable to humanoids due to the high number of degrees of freedom that must be coordinated concurrently. Therefore, exploiting humanoids’ potential in service tasks remains an elusive goal. One of the most promisi...

متن کامل

Real-time full body motion imitation on the COMAN humanoid robot

On-line full body imitation with a humanoid robot standing on its own two feet requires simultaneously maintaining the balance and imitating the motion of the demonstrator. In this paper we present a method that allows real-time motion imitation while maintaining stability, based on prioritized task control. We also describe a method of modified prioritized kinematic control that constrains the...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Signal Processing

دوره 108  شماره 

صفحات  -

تاریخ انتشار 2015